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Abstract

Water balance considerations at the soil surface lead to an equation that

relates the autocorrelation of soil moisture in climate models to (1) season-

ality in the statistics of the atmospheric forcing, (2) the variation of evap-

oration with soil moisture, (3) the variation of runoff with soil moisture,

and (4) persistence in the atmospheric forcing, as perhaps induced by land-

atmosphere feedback. Geographical variations in the relative strengths of

these factors, which can be established through analysis of model diagnostics

and which can be validated to a certain extent against observations, lead to

geographical variations in simulated soil moisture memory and thus, in effect,

to geographical variations in seasonal precipitation predictability associated

with soil moisture. The use of the equation to characterize controls on soil

moisture memory is demonstrated with data from the modeling system of

the NASA Seasonal-to-Interannual Prediction Project.



1 Introduction

A period of atypically heavy rainfall can produce a positive anomaly in soil

moisture, and the dissipation of that anomaly through evaporation and other

processes may take weeks to months. Similar timescales apply to the dissi-

pation of negative soil moisture anomalies (atypically dry soil). In effect, the

soil can "remember" the wet or dry conditions that caused an anomaly long

after these conditions have been forgotten by the atmosphere.

Quantifying soil moisture persistence -- soil moisture "memory" -- re-

quires long-term (multi-decadal) records of soil moisture, and unfortunately

such records do not exist in many parts of the world. Some areas, chiefly

in Asia, do have substantial data, however [Robock et al., 2000]. Vinnikov

and Yeserkepova [1991] analyzed Russian soil moisture and derived anomaly

decay timescales of two or three months for several monitoring sites. Vin-

nikov et al. [1996] found a similar timescale when analyzing data from the

Valdai station in Russia, and Entin et al. [2000] derived timescales of about

two months from Chinese, Mongolian, and Illinois data. Useful alternatives

to direct soil moisture measurements include model-generated soil moistures,

particularly when the models are driven by observed meteorological condi-

tions. Huang et al. [1996], for example, inferred soil moisture data from

precipitation and temperature measurements and showed that soil moistures

in the United States are significantly correlated with surface temperatures

observed several months later, a strong indication that soil moisture memory
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is important at those lags. Georgakakos et al. [1995] used a hydrological

model to transform precipitation and pan evaporation measurements in two

basins into time series of soil moisture contents that also suggest timescales

of one to two months.

Such memory has profound implications for long-term weather prediction.

Seasonal prediction of meteorological conditions cannot rely on the initializa-

tion and modeling of the atmosphere alone, since the timescales over which

atmospheric anomalies dissipate arc much too short. Seasonal forecasting

must instead rely on the atmosphere's response to those components of the

earth system that can be predicted months in advance, namely, the oceans

and the land surface. Although the ocean has the longer memory of the

two, various studies [e.g., Kumar and Hoerling, 1995; Trenberth et al., 1998;

Shukla, 1998] suggest that ocean conditions have only a limited impact on

predictability over most midlatitude continental regions. Thus, the memory

associated with land surface soil moisture may turn out to be the chief source

of midlatitude forecast skill, particularly if the atmosphere there responds in

realistic and predictable ways to the soil moisture anomalies [Koster et al.,

2000].

To take advantage of an observations-based specification of initial soil

moisture conditions in a seasonal forecast system, the system must reproduce

accurately the anomaly dissipation timescales. An understanding of what

controls these timescales is thus vital. Not only is it important to get the



right timescalefor the right reason,but validation data are not available

in many parts of the world, and the data that are available indicate that

the timescaledoesvary spatially. In lieu of validating a simulated timescale

directly with observations,it may be necessaryto validate the simulation of

the physicalprocessesthat areknown to control it.

In a landmark study, Delworth and Manabe [1988] examined the physics

behind soil moisture memory by modeling soil moisture variability in the

Geophysical Fluid Dynamics Laboratory's atmospheric general circulation

model (AGCM) as a first-order Markov process driven by random precipita-

tion (and snowmelt) forcing, P:

dw(t) Ep

- + P - Q, (1)dt

where w is the moisture stored in the GFDL AGCM's bucket model [Manabe,

1969], (;'8 is the bucket model's water holding capacity, Ep is the potential

evaporation rate, and Q is the runoff. For cases of low Q, (1) relates the soil

moisture anomaly timescale to the term Cs/Ep. The Markovian framework,

which is also utilized by Huang et al. [1996], has been applied extensively

to the interpretation of observational data [e.g., Vinnikov and Yeserkopova,

1991; Entin et al., 2000].

The Markovian framework, however, has at least two important limita-

tions. First, the meteorological forcing (precipitation and radiation) is as-

sumed to be stationary; seasonal variations in the statistics of the forcing are

ignored. As will be seen, in some situations these seasonal variations have a



critical impact on soil moisture memory. Second,persistencein the meteo-

rological forcing is ignored. This persistencecould be inducedby persistence

in external boundary conditions (e.g.,seasurfacetemperatures),or it could

begeneratedthrough land-atmospherefeedback.Wet soil induced by heavy

rains, for example,could producehigherevaporation,which in turn could in-

duce additional precipitation through both local recyclingand modifications

in the large-scalecirculation. This would help to maintain the original soil

moistureanomaly.

The potential impact of land-atmospherefeedbackhasbeendemonstrated

in a number of studies. Rodrigues-Iturbe et al. [1991] used a statistical-

dynamical model to show that this feedback can result in multiple equilibria

for soil moisture state. Koster and Suarez [1996a] examined "perpetual sum-

mer" AGCM simulations with prescribed timescales of soil moisture retention

and thereby isolated a significant impact of feedback on persistence. In a se-

ries of papers, Liu and Avissar [1999ab] analyzed persistence with an AGCM

coupled to a biosphere model and, with the help of an associated fourth-order

analytical model, they determined that feedback with the atmosphere largely

controls the seasonal timescale of simulated soil moisture anomalies.

Thus, given the possibility of either persistence in forcing (e.g., via land-

atmosphere feedback) or nonstationarity in forcing, a strictly Markovian

framework may be inadequate for a full analysis of soil moisture memory.

In the present paper, we propose a more complete framework. In section 2,



we derive a comprehensive equation for soil moisture autocorrelation from

the standard surface water balance equation. In section 3, we test the equa-

tion globally with multi-decade AGCM results. The equation is taken apart

in section 4 to show how several different physical controls combine to deter-

mine a region's soil moisture memory.

2 Soil Moisture Autocorrelation Equation

In the absence of snow, the water balance for the soil column of a typical

land surface model (LSM), for time period (e.g., month) n of year i, can be

written:

Cswn+l,i = Cswni +Pni -- E.i - Qni. (2)

Here, Cs is the column's water holding capacity, w is the average degree of

saturation in the column as a whole, P is precipitation, E is evaporation

(which includes transpiration, bare soil evaporation, and interception loss),

and Q is runoff (which includes both overland flow and drainage out of the

column). When applied to w, the subscript n refers to the value at the

beginning of the time period, and when applied to P, E, and Q, it refers to

the accumulated flux over the time period.

The evaporation and runoff fluxes in an LSM are typically complex func-

tions of numerous state variables and model parameters. Nevertheless, Koster

and Milly [1997], in an analysis of results generated by many different LSMs

for the Project for the Intercomparison of Landsurface Parameterization
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Schemes (PILPS), showed that, to a large degree, the net outcome of all

this complexity can be empirically approximated by simple linear functions

of soil moisture. We employ this type of representation in the present statis-

tical analysis. Here, we take:

and

Q"____!= awni + b (3)
P.i

Eni
m = cw,i + d, (4)
Rni

where R,i is the net radiation for the time period and where a, b, c, and d are

empirical parameters established through the analysis of lengthy LSM sim-

ulations. The adequacy of this approximation is demonstrated with AGCM

results in Section 3.2.

Note that (4) is distinct from the bucket model's evaporation equation

[Manabe, 1969], which underlies Delworth and Manabe's [1988] Markovian

analysis of soil moisture memory. Although the two equations look similar,

they are fundamentally different - evaporation in the bucket model is scaled

by the potential evaporation rather than by the net radiation, and potential

evaporation is strongly (negatively) correlated with soil moisture. Implica-

tions of this difference for analysis of bucket model results will be discussed

in section 5.

Substituting (3) and (4) into (2) yields, upon rearrangement,

Cswn+l,i --- (Cs - cRni - aPni) Wni + (P,i - dRni - bPni)
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Now consider separating the soil moisture, precipitation, and net radiation

in this equation into their mean components for the given time of year (indi-

cated by overlines) and the corresponding interannual anomalies (indicated

by primes):

and

w.i = w. + Wni, (6)

P.i = Tn + Fnti, (7)

Rni = Rn -_- Rlni • (8)

Eqs. (6) -- (8) can be substituted into (5) to produce a lengthy equation in

terms of means and anomalies. This equation, when its time mean is sub-

tracted from it and when higher order terms are ignored, yields the following

equation for the anomalies alone:

I f I I

Wn+l,i = Anwni + BnPni - HnRni, (9)

where

and

B

aPn cR.

A. = 1 C. C. ' (10)

1
B.= _---(1- a_.-b), (11)

ws

1

H. = _ (c_ n + d). (12)

The appearance of (9) is simplified further by combining the two forcing

terms into one. Taking

Flni = BnPIni- HnRIni, (13)



weget anequation that relatesthe newvalueof w to the old value and some

random forcing:

? ! !

Wn+l, i : A_wni + Fni. (14)

Eq. (14) serves as the basis for the derivation of the autocorrelation

equation. Both sides of the equation are multiplied (in turn) by ' 'Wn,i, Wn+l,i_

and F_i. Taking time means of the resulting three equations gives:

cov(w., Wn+l) = A_a_. + cov(wn, Fn), (15)

and

aw.+2L = A.cov(wn, w.+l) + COV(Wn+I, Fn), (16)

cov(w.+l, F.) = A.cov(w.,Fn) + a2F., (17)

where cr_c refers to the variance of variable X and where cov(X, Y) refers

to the covariance between variables X and Y. Note that a 2 and a 2
Wn Wnq-L

are distinct here due to an assumed seasonality of the precipitation and net

radiation forcing; as discussed above, this assumption of nonstationarity is

a key difference between the present analysis and the Markovian analysis of

Delworth and Manabe [1988].

Equations (15)-(17) are now combined to produce an equation for the

autocorrelation, p, of soil moisture:

cov(w., Wn+l) A.a_. + cov(w_, F.)
p = = (18)

2A cov(  , Y.)(:rw_(7w.+ _ _w., v/ An crw. + +



Note that this equation relates p to the variance of w at the beginning of

the time period (a_n), to the forcing and its covariance with the initial w

during the time period, and to the overall structure of the land surface model

(through the coefficients a, b, c, and d, which underlie An and F,_). The

equation looks complex but can be simplified greatly by letting it also depend

explicitly on the variance of soil moisture at the end of the time period.

Squaring both sides of (14) and then taking the time mean of each side gives

2 2 2 2Ancov(wn, Fn) + aft.crw.+l : Anaw,_ + 2 (19)

Substituting (19) into (18) gives, after a little manipulation, the alternative,

O'wn [ COV(Wn' Fn) ] (20)
p - An +

O"w n+ l O'2n

simpler equation for p:

3 Demonstration with AGCM Data

3.1 Model and Simulation Description

Diagnostics generated with the NSIPP-1 AGCM of the NASA Goddard Space

Flight Center provide a test of (18). This AGCM is an improved version of

the model we have used in previous studies [e.g., Koster and Suarez, 1996a;

Koster et al., 2000] and is currently a key component of the climate sys-

tem model used by the NASA Seasonal-to-Interannual Prediction Project

(NSIPP). The climatology of the NSIPP-1 AGCM is described by Bacmeis-

ter et al. [2000].
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The land surface model (LSM) used with the AGCM is the Mosaic LSM

of Koster and Suarez [1992, 1996b], a "SVAT" (soil-vegetation-atmosphere

transfer) scheme that separates each grid cell into subgrid "tiles" based on

vegetation class and then performs separate energy and water balance cal-

culations over each tile. All tile quantities (evaporation, radiation, etc.) are

aggregated to grid cell totals prior to performing the analyses below.

The global distribution of total water holding capacity used in the present

analysis is illustrated in Figure 1. Each tile within a grid cell maintains three

soil layers, with thicknesses assigned according to vegetation type. The effec-

tive grid-cell capacities in this figure, Cs, are computed from the component

tile values, Ci, using

1 N fi (21)

where N is the number of tiles in the grid cell and fi is the fractional area

coverage of tile i.

The data used for the present analysis come from an ensemble of four

AGCM simulations run at 2 ° latitude x2.5 ° longitude resolution and forced

with observed sea surface temperatures. Two of the simulations span a period

from the early 1950s to present, and the other two cover the period from

1980 to present. From these four simulations we extracted 129 years of data

for analysis. In the following, we focus on results for July only; results for

neighboring months are similar.
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3.2 Estimated Evaporation and Runoff Functions

The autocorrelation equation, (18), relies in part on empirically-derived linear

relationships between root zone soil moisture (w) and both evaporation and

runoff. The actual relationships implicit in the AGCM are shown in Figure

2 for a random sampling of grid cells from the wet tropics and from a range

of climates in the United States. On a given plot, the abscissa represents the

degree of saturation in the root zone and the ordinate represents either the

evaporation ratio (E) or the runoff ratio (pQ), as calculated from monthly E,

R, Q, and P totals. Each point in the plot represents data from one of the

129 Julys simulated. Overlain on each plot is the "best fit" line from linear

regression.

The plots for these representative points suggest that the assumption of

linearity between w and both E and _p is reasonable, though far from perfect.

Scatter around the fitted line is small for the tropical grid cell (except at very

low w) and for the eastern U.S. cell. In the eastern U.S., July evaporation is in

fact insensitive to w over the range of soil moistures attained. In the central

U.S., scatter is significantly higher, though underlying linear relationships

are still apparent, to first order.

The linearity assumption is poor in the western U.S. grid cell. In this arid

cell, the vegetation fraction is small, so that evaporation is dominated by a

thin surface soil layer and not by root zone moisture dynamics. Also, Q/P

is upwardly biased during months of little or no precipitation, during which
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drainageof the precedingmonth's water can still occur. (Presumably this

alsoexplainsthe threehigh points at low w seen in the pRplot for the central

U.S.) As will be seen below, the breakdown of the linearity assumption in

arid cells, though problematic, does not induce large errors in the estimation

of soil moisture autocorrelation.

3.3 Simulated Versus Predicted Autocorrelations

Our analysis focuses on the 30-day-lagged autocorrelations (P30) of soil mois-

ture for July, i.e., the correlation between the degree of saturation in the root

zone on July 1 with that on July 31. The global P30 distribution simulated

by the AGCM is displayed in Figure 3a. High values are seen in the deserts

and in parts of the wet tropics, though for different reasons (Section 4). A

mix of moderate and low values are seen elsewhere.

In addition to the simulated value of P30 at each grid cell, we can compute

an estimated value using (18). The global field of estimated p30 is shown in

Figure 3b. In this plot, a handful of negative p30 values are set to zero;

under some circumstances, the linearizations behind the equation allow it

to "overshoot" a reduction in memory, especially at monthly and longer

timescales, and accordingly, the best interpretation of a negative value from

(18) is a zero value. In addition, the autocorrelations at ice-covered points,

for which our analysis does not apply, are arbitrarily set to zero.

The agreement between the two maps, though not perfect, is very high
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-- (18) clearly capturesmuchof the simulatedgeographicalvariation in soil

moisture autocorrelation. The scatter plot in Figure 4, showingestimated

versussimulated autocorrelations,quantifies the agreementfurther. Each

point in the plot correspondsto a single AGCM grid cell. The cloud of

points is centeredon the 1:1 line, and the r 2 value of 0.57 shows that (18)

explains a large fraction of the geographical variation in simulated P30. The

standard error of estimation is 0.20.

A significant part of the scatter in Figure 4 is related to points with little

vegetation, presumably for two reasons: (i) as suggested in Figure 2, assumed

linear relationships between soil moisture and both the runoff ratio and the

evaporation ratio are less valid in arid regions, and (ii) these points have a

much smaller water holding capacity, so that nonlinearities over the course

of a month have a larger effect. When points for which the field capacity is

less than 200 mm are removed from the analysis (Figure 5), the agreement

between the simulated and estimated P30 values improves, with r 2 increasing

to 0.65 and the standard error of estimation decreasing to 0.16.

4 Interpretation of Autocorrelation Equation

The agreement in Figure 3 implies that an understanding of the structure of

(20) should lead to an understanding of why soil moisture memory is high

in some regions and low in others. In other words, a study of (20) should

elucidate the physical controls on memory and help us quantify their relative
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importance. Note that the expansionof the term An in (20) using (10) yields

the equivalent equation

aw. [ cR,, apt, cov (w,, Fn)] (22)p- 1 + -- •

Each term in this expanded equation turns out to be associated with a specific

physical control. We now examine each term individually.

4.1 Term l: Effect of Nonstationarity

The first term in (22), a_./a_.+l, reflects nonstationarity (seasonality) in

the atmospheric forcing. If the statistics of this forcing did not vary with

season, then the statistics of soil moisture could not vary with season, and

the term a_°/o_.+_ would be identically 1. Precipitation and net radiation,

however, almost always have strong seasonal cycles, and thus aw. and aw°+ 1

are rarely equal. Depending on the magnitudes of the other terms in (22),

the nonstationarity effect can be highly important.

To get an intuitive feel for the control of nonstationarity on soil moisture

memory, consider the two extreme examples in Figure 6. For simplicity, these

examples focus on precipitation variability alone. In Case 1, the precipitation

variance of month n is assumed to be low, and that of the preceding months is

assumed to be high. Reflecting the high precipitation variance in the earlier

months is a high soil moisture variance at the beginning of month n; the

terms w_,, and Wb,n represent two possible - and well separated - values of soil

moisture at the beginning of the month. Because the precipitation variance
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in month n is low, the range of possible monthly soil moisture change, Aw,

for month n must also be low, and wa,,, and Wb,n will thus evolve to new

values that are still distinct from each other. In other words, a high soil

moisture anomaly will tend to remain relatively high. The situation outlined

in Case 1 is conducive to high soil moisture autocorrelation.

In Case 2, on the other hand, the precipitation variance of month n is

assumed to be high, and that of the preceding months is assumed to be low.

In this case, the variance of soil moisture at the beginning of month n must

be small, and wa,n and Wb,n will necessarily be close together. Then, because

the precipitation variance in month n is large, Aw can be large, and wa,_

and Wb,n can both evolve to either high or low values. In essence, the high

precipitation variance swamps out the initial distinction between wa,,, and

Wb,,, SO that memory of the distinction is lost. Case 2 is conducive to low

soil moisture autocorrelation.

Figure 7 shows the global distribution of the scaling factor ow,/a,,,+l, as

determined from the AGCM's July diagnostics. The factor is large (that is,

case 1 applies, leading to increased persistence) across the deserts of northern

Africa and central Asia and across southern Africa and Australia. On the

other hand, the scaling factor is small (and thus persistence is reduced) in

eastern Asia, central Europe, and the equatorial Amazon. The value of

aw,/a_,n+ _ naturally has an upper limit; when multiplied by the other factor

in (22), the product must be less than or equal to one. Note also that if
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aw./aw.+l is greater than one in one season, it must necessarily be less than

one in another season. The results in Figure 7 are specific to July.

4.2 Term 2: The Evaporation Effect

The second term in (22) cR_ is the "evaporation effect" through which
' Cs '

characteristics of the land surface model (c and Cs) and the radiative forcing

(Rn) combine to reduce soil moisture persistence. The mechanism behind

this reduction is illustrated by rewriting (4) as

Eni CRni dRni

Cs -- Cs l/)ni-_- -Cs , (23)

where Eni/Cs represents the change in the degree of soil moisture satura-

tion attributable to evaporation. The top plot in Figure 8 shows that (23)

induces different values of En/Cs in response to two different soil moistures

wj,n and Wi,n. The resulting changes in the degree of saturation are thus dif-

ferent, and the final values of wj and wi are closer together than they were at

the beginning of the month (see bottom plot in figure). Because soil mois-

ture persistence translates into a soil moisture anomaly's ability to retain its

distinctiveness from other possible states over time, anything that acts to re-

duce that distinctiveness - anything that acts to brings distinct states closer

together - should reduce the autocorrelation. In fact, (22) implies that on

average, the evaporation effect decreases the autocorrelation (before the scal-

ing by aw,/aWn+l) by c-Rn/Cs. This is the restoring influence of evaporation

on soil moisture anomalies.
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Figure 9 (top) shows the global distribution of _ for July. The evapo-Cs

ration effect strongly reduces persistence in dry areas of the continents, with

especially large reductions in the western United States. Reasons for the

distinction between wet and dry areas in the map are twofold: (1) dry areas

typically have less vegetation and accordingly have a lower water holding

capacity, C8; and (2) in wet areas, the evaporation is controlled more by

atmospheric demand than by soil water content, and accordingly, the slope

c is smaller there.

4.3 Term 3: The Runoff Effect

An analogous interpretation applies to the restoring influence of runoff. The

"runoff effect" is represented by the third term in (22), aPn/C_. We can

rewrite (3) as

Phi - Q,i _ Pro(1 _ b) aP_,iwni (24)
c_ C_ C_ '

where (Phi-Q_i)/Cs represents the increase in the degree of saturation result-

ing from the infiltration of rainwater. Note that because a-Pn/C_ is positive,

a lower (drier) value of wni implies a higher value of (P.i - Q.i)/Cs. In other

words, although two different soil moisture states would both increase in

response to a rain event, the drier state would increase more, and the two

states would be brought closer together, in direct analogy to the reduction in

the distinction of states shown in Figure 8. Again, this implies a decrease in

persistence. From (22), the average decrease in persistence due to the runoff
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effect amounts to aPn/C_.

Figure 9 (middle) shows the geographical variation of aPn/C_ for July.

The runoff effect reduces soil moisture persistence substantially in Central

America, the islands of the west Pacific, parts of the Amazon, and parts of

China. It also affects, to a lesser degree, persistence in high latitudes. A

comparison of the maps for cRn/C_ and aPn/C_ reveals that the evaporation

and runoff effects essentially act in different regions. The reason is straight-

forward - whereas the evaporation effect is enhanced in dry regions (for the

reasons noted above), the runoff effect is enhanced in wet regions because:

(i) T. is higher in wet regions; and (ii) in the Mosaic LSM, the fitted slope

a is higher when the average soil moisture is higher, due in part to higher

hydraulic conductivity.

Thus, an especially dry region and an especially wet region both tend to

have low soil moisture memory, but for entirely different reasons. Neither

aP,/C8 nor cRn/C_ is typically large in regions of intermediate wetness, and

thus in these regions, (22) often predicts high soil moisture memory.

4.4 Term 4: Persistence of Atmospheric Forcing

The final term in (22), cov(w,,Fn)/a_,,, encompassses the "forcing persis-

tence" effect, which is fairly intuitive. Clearly, if precipitation shows a high

temporal correlation - if high precipitation in one month tends to be fol-

lowed by high precipitation in the next - then soil moisture will also show a

high temporal correlation, since soil moisture anomalies largely reflect prior
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precipitation anomalies. In the NSIPP AGCM, as in earlier versionsof the

model, precipitation persistenceis high in many parts of the tropics [Scott

et al., 1995; Koster and Suarez, 1995]. These high values are presumably

reflected in the tropical soil moisture autocorrelations shown in Figure 3a.

Figure 9 (bottom) shows the geographical distribution of cov(wn, F,)/a_

for July. The positive sign of this term in (22) implies that the forcing

persistence effect can compensate for some of the persistence lost through

the evaporation and runoff effects. Such compensation is indeed seen, for

example, in parts of the western United States, in the Sahel, and the western

Pacific islands. Obviously, the value of COV(Wn, Fn)/a_ has an upper limit

defined by the other terms in the equation, for the equation as a whole cannot

produce an autocorrelation that exceeds one.

4.5 Relative Impact of Identified Controls

Through analysis of the maps in Figures 7 and 9 in conjunction with the

autocorrelation maps in Figure 3, we can isolate and quantify the physical

controls on soil moisture memory at any grid cell. For example, a look at

the maps shows that only nonstationarity and the evaporation effect have

a significant impact on soil moisture autocorrelation in most of Australia

and that this control is strong enough to reduce the autocorrelation there to

intermediate values. In the Sahara, on the other hand, none of the controls

is particularly important, and the autocorrelation is very high.

Such qualitative evaluation of the controls on a region's soil moisture
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memory is expedited by histogramssuch as those in Figure 10. Shownfor

six different grid cells is an indication of how each of the four identified

controls affect the 30-day-laggedautocorrelation (Pa0)of soil moisture. The

first three barsin eachplot representthe evaporationeffect, the runoff effect,

and the forcing persistenceeffect, respectively; their lengths are set equal

to C-Rn//Cs, aPn/Cs, and cov(wn, Fn)//o'2 n. Both the evaporation and the

runoff effects reduce persistence, and thus their bars lie to the left of the

vertical line, whereas the bar for the forcing persistence effect, which increases

persistence, lies to the right of the line whenever this effect is statistically

significant. The net impact of these three effects (i.e.,the sum of c-R,/Cs,

a--fin/C_, and cov(wn,Fn)/a_,,) is shown as the fourth bar. As seen from (22),

one minus this sum is equivalent to the autocorrelation obtained under the

assumption of no seasonality in the atmospheric forcing; this autocorrelation

("EST. p, NO SEASONALITY") is shown as the fifth bar in the histogram.

The impact of seasonality (i.e., the nonstationarity effect) is indicated by

the difference between this fifth bar and the one just below it ("EST. p,

W/SEASONALITY"), which represents the autocorrelation computed with

(22). The final bar shows, for comparison, the autocorrelation that was

actually simulated at the grid cell.

Through analysis of Figure 10, we can now say that soil moisture memory

in the eastern United States cell is reduced solely by the seasonality and runoff

effects, in contrast to the west-central United States cell, in which memory is
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also influencedby the evaporationeffectand by forcing persistence.Forcing

persistenceisalsosignificantin the equatorialAmazonandthe southeastAsia

cells. In the equatorial Amazon, this persistenceis strongly counteracted

by the runoff effect, and seasonalityacts to reducesoil moisture memory

evenfurther. In southeastAsia, on the other hand, forcing persistenceis

only weakly counteractedby the evaporation effect, and the resulting soil

moisture autocorrelation is high. In southern Africa, the evaporationeffect

is counteractedby the seasonalityeffect,whichhereactsto increasememory;

the net result is a high value of P30. The low memory in eastern China is

induced mostly by the runoff effect.

Again, these are just examples; the soil moisture memory simulated at

any land grid cell can be similarly explained in terms of the relative strengths

of the four identified controls. Establishing these relative strengths is impor-

tant because, as noted in section 1, soil moisture memory can potentially

contribute to precipitation predictability at seasonal timescales. If precipita-

tion predictions stemming from soil moisture initialization are to be believed,

the memory of soil moisture in the model must be correct for the proper rea-

sons - the relative contributions of the different factors in a given region

must agree with those inferred from analysis of meteorological and surface

hydrological data. Evaluating the underlying controls on soil moisture mem-

ory would be especially helpful in the great majority of regions for which the

observed soil moisture data is of insufficient duration for a direct evaluation
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of simulated autocorrelation.

5 Summary and Discussion

An equation, (22), for the autocorrelation of soil moisture in an AGCM was

derived from water budget considerations and from two simple, fitted func-

tions that relate evaporation and runoff to soil moisture content. Figures

3 and 4 show that the equation successfully reproduces the autocorrelations

generated by the modeling system of the NASA Seasonal-to-Interannual Pre-

diction Project (NSIPP). The equation should, in fact, be applicable to any

AGCM system.

According to the equation, the autocorrelation of soil moisture- soil mois-

ture "memory" - is mainly controlled by four distinct factors: (i) nonstation-

arity in the statistics of the forcing, as induced by seasonality, (ii) reduction

in anomaly differences through the functional dependence of evaporation on

soil moisture (through the slope c), (iii) reduction in anomaly differences

through the functional dependence of runoff on soil moisture (through the

slope a), and (iv) temporal memory in the precipitation and radiation forcing

fields, as perhaps induced by land-atmosphere feedback. Thus, soil moisture

memory in an AGCM is controlled by a combination of climate properties

(through all four factors), land surface model characteristics (through the sec-

ond and third factors) and land-atmosphere interaction (through the fourth

factor). The relative importance of the four controls is roughly indicated by
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the mapsin Figures 7 and 9. Through analysisof thesemapsand associated

histograms(e.g.,those in Figure 10),onecan explain the simulated valueof

soil moisture autocorrelation at any grid cell - onecan describethe extent

to which eachphysicalcontrol increasesor decreasesthe memory.

Again, given the dearth of multi-decadal global soil moisture data, the

validation of these four controls in an AGCM simulation should aid in the

evaluation of simulated soil moisture memory itself. This should in turn

contribute to the evaluation of seasonalprecipitation predictions that rely

on soil moisture initialization and subsequentsoil moisture memory. The

work presentedhereincomplementsthe analysisof Koster et al. [2000], who

used ensembles of lengthy simulations to examine the sensitivity of rainfall

to prescribed surface conditions. Koster et al. [2000] essentially addressed

the following question: if soil moisture can be predicted perfectly, to what

extent does that improve the prediction of precipitation - i.e., to what extent

are precipitation anomalies guided by soil moisture anomalies? The present

paper begins to address the critical second part of the problem: to what

extent can soil moisture anomalies be predicted in the first place? Both

questions must be addressed if we are to assess the contributions of land

surface initialization to the seasonal prediction of precipitation.

An interesting application of the framework described in this paper would

be the determination of "seasonal barriers" to soil moisture prediction. The

factors that determine soil moisture memory do vary seasonally, and as a
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result, soil moisture persistenceacrossparticular monthsmay besharply re-

duced relative to other months. Identifying thesemonths is critical, since

they help definethe limits of predictability in the modelingsystem. Seasonal

variations in soil moisturepersistencemay result, for example,from seasonal

variation in the forcing statistics - the two casesoutlined in Figure 6 sug-

gest that a regionwith markedseasonalityin precipitation varianceshould

experiencesomemonths with enhancedpersistenceand somemonths with

diminished persistence. Seasonalvariations in persistencecould also stem

from seasonalchangesin the overlying atmosphericconditions, since some

conditions may bemoreconducivethan others to land-atmospherefeedback,

and from seasonalvariations in the effectiveslopesof the evaporation and

runoff functions.

An additional sourceof seasonalvariation is more subtle but is worth

mentioning here. One can imagine a situation in which the rainfall in a

specificmonth, sayJuly, is alwaysvery large, so that soil moisturesin July

are typically fully saturated (or at somemodel-specificmaximum value). For

this situation, knowing what the soil moisture is at the beginning of June

doesnot translate into skill in predicting August soil moisture-- all memory

is lost in July, when all states collapseinto the samevery wet state. In the

context of the framework describedin this paper, this low memory reflects

an overwhelmingcontribution from the runoff effect. In essence,the term

aPn/Cs is maximized during July to produce a p of 0.

25



By the way,the autocorrelationanalysisdescribedherein is not inconsis-

tent with that of Delworth and Manabe [1988] (see section 1). In fact, the

autocorrelation equation, (22), reduces exactly to their implied form under

four assumptions, namely: (i) a lack of seasonality in the atmospheric forc-

ing, (ii) a lack of persistence in the forcing, (iii) the neglect of runoff variation

with soil moisture, and (iv) the equivalence of potential evaporation and net

radiation. Given the fact that these assumptions are often not justified, (22)

can be considered the more complete equation. For most AGCMs, the first

assumption in particular is not justified, and for most land surface models,

the third is also inappropriate [see, e.g., Koster and Milly, 1997]. The fourth

assumption is somewhat dangerous. Equation (22) could not be derived if

potential evaporation replaced net radiation in (4); because potential evap-

oration is strongly correlated with soil moisture, the "higher order" terms

neglected in deriving (9) would no longer be negligible. The proper applica-

tion of (22) to results from a "bucket model" simulation would require the

use of net radiation values rather than potential evaporation rates, despite

the bucket model's explicit use of the latter.

Finally, we note that by focusing our analysis on boreal summer, the anal-

ysis above has ignored some important cold season effects. Significant mem-

ory, for example, is associated with the build-up and maintenance of snow-

pack. Also, when soil moisture freezes in late fall, the associated anomaly is

retained in the soil until the soil thaws in the spring. A complete treatment
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of land surface memory should take these additional effects into account.
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Figure Captions

Fig. 1 Effective column water holding capacities (mm) at the scale of the

grid cell, as derived from the individual tile values used by the Mosaic

model.

Fig. 2 Simulated July evaporation ratio (E/R) and runoff ratio (Q/P) versus

root zone soil moisture at 4 GCM grid cells. Each point represents one

simulation month, a. Northern Amazon. b. Eastern U.S.c. Central

U.S.d. Western U.S.

Fig. 3 Top: Map of simulated 30-day lagged autocorrelation of root zone soil

moisture, P30. Middle: Corresponding map of p30 as estimated with

(18). Bottom: Differences: estimated- simulated autocorrelations.

Fig. 4 Scatter plot showing, for each ice-free and ocean-free GCM grid cell,

the degree to which the simulated 30-day lagged autocorrelation of soil

moisture agrees with the value estimated with (18).

Fig. 5 Same as Figure 4, except considering only points for which the water

holding capacity in the root zone exceeds 200 mm.

Fig. 6 Illustration of how nonstationarity in precipitation statistics can affect

soil moisture memory. See text for details.

Fig. 7 Global distribution of aw,/aw,+l, the scaling factor associated with

seasonality (nonstationarity) in the atmospheric forcing.
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Fig. 8 Illustration of how the terms in (22)canaffect soil moisture memory.

Seetext for details.

Fig. 9 Global fieldsof cR./C8 (top), a-fi,/C8 (middle), and cov(wn, Fn)/O-2n

(bottom).

Fig. 10 Histograms showing the impact of four factors (the evaporation ef-

fect, the runoff effect, forcing persistence, and seasonality) on the 30-

day-lagged autocorrelation (P30) of soil moisture. For the top three

bars in each plot, the x-axis is the change in P30 resulting from the in-

dicated factor; a positive value implies that the factor acts to increase

P30, whereas a negative value implies that it acts to decrease Pa0. The

net impact of these three factors is shown with the fourth bar. The

final three bars show three values for P30: that estimated with (22), but

assuming no seasonality (equivalent to one minus the previous sum);

that estimated with the full (22); and that actually simulated by the

GCM. The difference between the first two of these P30 values indicates

the impact of the seasonality effect.
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Figure 1: Effective column water holding capacities (mm) at the scale of the

grid cell, as derived from the individual tile values used by the Mosaic model.
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Figure 2: Simulated July evaporation ratio (E/R) and runoff ratio (Q/P)

versus root zone soil moisture at 4 AGCM grid cells. Each point represents

one simulation month, a. Northern Amazon. b. Eastern U.S.c. Central

U.S.d. Western U.S.
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soil moisture, P30. Middle: Corresponding map of P30 as estimated with (18).
Bottom: Differences: estimated - simulated autocorrelations.
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Figure 4: Scatter plot showing, for each ice-free and ocean-free AGCM grid

cell, the degree to which the simulated 30-day lagged autocorrelation of soil

moisture agrees with the value estimated with (18).
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Figure 5: Same as Figure 4, except considering only points for which the

water holding capacity in the root zone exceeds 200 mm.
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Figure 6: Illustration of how nonstationarity in precipitation statistics can

affect soil moisture memory. See text for details.
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Figure 10: Histograms showing the impact of four factors (the evaporation

effect, the runoff effect, forcing persistence, and seasonality) on the 30-day-

lagged autocorrelation (P30) of soil moisture. For the top three bars in each

plot, the x-axis is the change in P30 resulting from the indicated factor; a

positive value implies that the factor acts to increase p30, whereas a negative

value implies that it acts to decrease P30. The net impact of these three

factors is shown with the fourth bar. The final three bars show three values

for P30: that estimated with (22), but assuming no seasonality (equivalent

to one minus the previous sum); that estimated with the full (22); and that

actually simulated by the AGCM. The difference between the first two of

these P30 values indicates the impact of the seasonality effect.
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